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Abstract—The characteristics of the surface waves supported by
a plane boundary of a semi-infinite region of gyrotropic plasma are
investigated for the case in which the direction of the magnetostatic
field is parallel to both the interface and the propagation direction.
Two cases are considered, one for which the plasma is terminated
by a perfectly conducting screen, and the other for which it is termi-
nated by a semi-infinite region of free space. Surface waves are
found to be propagated for all frequencies below both the plasma
and the gyromagnetic frequency in the first case, and below both the
plasma and 1/+/Z times the upper hybrid resonant frequency in the
second case. The characteristics of the surface waves are discussed,
and numerical results of the phase velocity and the propagation co-
efficient of the surface waves along the interface, as well as their
attenuation rates normal to the interface, are given.

I. INTRODUCTION

HE PROPAGATION of electromagnetic waves
Tin a stratified plasma layer has application both

to the ionospheric wave propagation and to the
plasma sheath problem connected with the reentry
communication. In a recent book, Wait [1] has given a
number of examples of electromagnetic wave propaga-
tion in stratified plasma media with and without the
presence of the external static magnetic field and with
emphasis on their application to the wave propagation
beneath the ionosphere. One of the simplest examples of
stratified plasma media, which has received consider-
able attention in recent times, is a perfectly conducting
plane screen covered with a semi-infinite layer of gyro-
tropic plasma with the magnetostatic field being paral-
lel to the screen [2]-[4]. The characteristics of the
waves guided along the screen in a direction perpendicu-
lar to the static magnetic field have been investigated
for the simplest case of a homogeneous and loss-free
plasma. Wait [5] has considered the extension of the
above analysis for the case of an inhomogeneous plasma.
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Another simple configuration of a plane stratified me-
dium which has been subjected to a considerable investi-
gation is a plane interface between two semi-infinite di-
electric regions. Epstein [6] has shown that a surface
wave can exist along a plane interface between free
space and a nonconducting medium with a negative
dielectric constant. Tamir and Oliner [7] have treated
the wave propagation along a plane interface between
an isotropic plasma and free space and, in confirmation
of the results of Epstein, have shown that a surface
wave can propagate along a vacuum-plasma interface
for frequencies below 1/+/2 times the plasma frequency.
The nature of the guided waves at a vacuum-magneto-
active plasma interface has also been considered for the
case in which the static magnetic field is parallel to the
interface, but is perpendicular to the propagation direc-
tion [8]-[11].

In view of its possible application to whistler propa-
gation, there is current interest in the study of wave
propagation in a plane stratified gyrotropic plasma for
the case of propagation in the direction of the external
magnetostatic field. In this paper, two simple problems
of the above category are studied, namely, the surface
wave propagation at a perfectly conducting plane screen
covered with magnetoionic medium, and at a plane inter-
face between free space and magnetoionic medium. In
each case, the direction of the magnetostatic field is as-
sumed to be parallel to both the screen and the propa-
gation direction.

IT. GENERAL CONSIDERATIONS

Itis convenient to start with the introduction of a rec-
tangular coordinate system x, ¥, and 2. The half-space
5> 0 is assumed to be filled with a homogeneous, loss-
free magnetoionic medium which is permeated through-
out by a uniform static magnetic field in the x direction.
Consequently, the electric and the magnetic vectors are
specified by the following time-harmonic Maxwell’s
equations [12]:

V X E = twuH; VX H= — fwee * E (1)

where o and e, are, respectively, the permeability and
the permittivity of free space. A harmonic time depen-
dence of the form e~i¢? is assumed for all the field com-
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ponents. The components of the relative tensor permit-
tivity e are given by the following matrix:

e 0 0
e=10 € e 2
0 —ie2 €
where
o = w-1-F ; & = R (3a)
Qr — R Q(Q? — RY)
S L A (3b)
@ o o

and w, w,, and w, are the source, the electron plasma,
and the electron gyromagnetic angular {requencies, re-
spectively.

Since only the two-dimensional problem (9/9y=0) is
to be considered, the field components may be sought in
the following form:

2 Heikolatikonz (4_)
Mo

E(x,3) = Eethototibonz,  H(y, z) =

where k¢ is the propagation coefficient of electromag-
netic waves in free space. Using (4) in (1), the following
relations are easily derived:

1
Ez = — (—1:62H1 - €3§‘Ez) (5)
1 €17
€3 [y
Hy=“—Ez; sz __-H:c (6)
1 n

(e163 — e? — ex{)ik, + ex{H,
—ees{1E, + ("‘612 + e? + em? + elfz)Hx

UG

i

i

0. (8)

A nontrivial solution of (7) and (8) easily may be shown
to be possible only if

nt+ Bpt4-C =0 )
where
1
B=-— [§2(€1 + &) — (6 — e+ 5153)] (10a)
€1
€3
C=—[—e)?— e (10b)

€1

With the use of (3a) and (3b), the expressions for B and
C, given in (10a) and (10b), may be simplified to yield
1

B= {204 — 202(1 + R + R2¢?
Q0> — 1 — RY) L ( ) I

— {204 — 2022 + RY) + 2 + R}] (11)

137
= (Qz — 1) [94@2 . 1)2 + 292(% _ 1)
0402 — 1 — R?) ‘
— Q2R(¢2 — 1)2 4+ 1], (12)
Also, it may be proved that
AR%A
B — 4C = ;
Q402 — 1 — R?)?
R2(¢2 — 1)2
A=92_1+L_.l. (13)
4¢?
The solutions of (9) are given by
B RevA
2t = — — 14

27T (e — 1~ RY

In obtaining 5 from 72 a branch-cut along the positive
real axis of the 92 plane is implied. Consider the follow-
ing four cases: 1) #; real, 9, imaginary; 2) both #; and
72 are complex such that ge= —m*; 3) both 5 and n,
are purely imaginary; and 4) both 5, and 7, are purely
real. It is convenient for the following analysis to deter-
mine the values of R, Q, and { which correspond to the
preceding four cases. This problem was studied by
Seshadri [13] in a different connection, and the results
are presented in Fig. 1 for R<1 and in Fig. 2 for B> 1.
In view of (4) and the foregoing discussion, it is obvi-
ous that, in general, any field component, say E,(x, 2),
has the following form:
Ez(x, z) — [Eleikor/a: + E2eikom,z]eiko§'x

z>0 (15)

where

7= tm m= . (16)
When 7 is purely imaginary or complex with a positive
imaginary part, the positive sign in (16) has to be
chosen since the negative sign will result in the fields
growing exponentially for large z. When 7 is real, either
the positive or negative sign in (16) has to be chosen so
as to fulfill the radiation condition. For a particular
value of R, ©, and ¢ for which 7, is real, let Q alone be
changed gradually, so that at a particular value of
Q=Q,, n will change from being purely real to being
purely imaginary. Therefore, 2=, corresponds to a
branch-point on the real axis of the Q plane. Along the
real axis, n is real on one side of the branch-point and is
purely imaginary on the other side. On the purely imagi-
nary side, it is obvious that 5.=m:. To obtain the cor-
rect value of 9, on the other side of the branch-point, it
is only necessary to analytically continue around the
branch-point in a manner that ensures analyticity in the
upper half of the Q plane. Such a procedure will guaran-
tee, in the case of a transient source, that there is no re-
sponse before the starting of the source. A detailed treat-
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Fig. 1(a) Regions of propagation and nonpropagation for the mode 1 for R2=0.8,
(b) Regions of propagation and nonpropagation for the mode 2 for R?=0.8.

L The following applies to Figs. 1 through 9.

a) =1

d) 92=1+R?

LS =

D =gt= +%[(1 ) @ D@ 1= ]

2
9 =te=14— [1— 9+ V@ D@ -1-R)

4= ¢§+V()+‘
1+_+ 1/R4 R

7[1+R2—\/1+R4]

Q%=
)

The curve {2={? intersects the curves {?=¢? and {2=§? at Q=Q,
and @=Qg, respectively.

ﬂ[l]][ﬂl =q real
% =5 complex (m = —n*)
D =7 imaginary.

ment of this method of determining the proper values of
7.(ms) when n1(ns) is real is given by Seshadri and Wu
[14], and the results alone are summarized in Table I,
with particular reference to R=0.5 and R=1.5 since
the numerical results given in this paper pertain to only
these two values of R.

With the help of (4) through (7), and (15), the expres-
sions for E,(x, z), H.(x, ), and H,(x, z) easily may be
obtained to be given by

NZe . . Zy .
Ey(x, Z) = —q| — Elezkoﬂaz + — E261k071bz il (17)
Na D)

€9
—_— [ZaEleikO"laZ + ZbE2eik0W]gik0§z
Mo

H.(x,2) =i (18)

E,
H,(z,z) = 634/ — 6zkonaz —+ — Ezlconbz} gtkots (19)
Mo

where

[eres — em? — ex(?]
el

Z=— (20)

It is desired first to investigate the nature of the
guided waves propagating along the magnetostatic field
at a perfectly conducting plane screen with a semi-
infinite region of magnetoionic medium.
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Fig. 2(a) Regions of propagation and nonpropagation for the mode 1 for R?=1.6.

(b) Regions of propagation and nonpropagation for the mode 2 for R?=1.6.

TABLE I
PROPER VALUES OF 74 AND 17,

0<Q<Qy

G < <{2 Ta =M
P <a<l H << Ne= —m
1<0< = 0<<th e =71
0 <<, << » __
Qa<Q<min (R, 1) << ® =T
YU << 0<i <t
Q<0< 0<E<ss -
1<2<max (R, 1) 0<i<te =12
max (R, 1) <Q<Q, 0<¢< o
Q<< @ 0<¢ <2 =172

I1I. PErrFECTLY CONDUCTING SCREEN COVERED
WITH A MAGNETOIONIC MEDIUM

The application of the boundary conditions E.(x, 0)
=FE,(x, 0) =0, on the perfectly conducting screen, to-
gether with (15) and (17), yields the proper dispersion
equation (PDE) specifying {:

PDE. — €M + €3(§2 - 61) = 0. (21)

The improper dispersion equation (IDE) is obtained
from (21) by changing n.ms to —n.m. On multiplying

PDE and IDE and noting that

Nt = miat = C; 6 — & = e — e — €165, (22)
the following possible solutions are obtained for {?:
Can? = [1 + (=8)"12]1 where S = @ — 1 — R%. (23)

In order to determine the proper solution of (21), it is
necessary to ascertain if (23) satisfies (21) by direct sub-
stitution. It is easily verified from (23) that ¢,is real for
0<Q<Q,, where it is less than unity, and { is real for
0<Q <R, where it is greater than unity. Note that
Q.=+/14+R? is called the upper hybrid resonant fre-
quency.

For values of ¢ given by (23), (12) reduces to
C = — (2 — 1)2/04. (24)

For 0 <2< Q,, C>0 and the Case 1, corresponding to n;
being real and 7, being imaginary, does not occur.

n

2
B= B, for{={,and A, = <-i—> —C;n=a,b (23

Using (11), (12), and (23), it can be shown that

By = f1(Q)/ QS (26)
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Ay = Ry(Q)/40452[1 + v/ =5] (27)
where
() = RY/(1 + v/=5) + 2(0* — 1)v/=S  (28)
and
n(Q) = RY(1 4+ +/=3) + 4(@* — DvV/=5. (29

It can be shown that f1(Q,) =0, where 1/4/2 <Q,<1. For
0<Q<Q,, f1(2) <0and, hence, B;>0,and for Q,<2<Q,,
f1(2) >0 and, hence, B;<0. It is also possible to show
that 7.(Q.0) =0 where Q,>Q, and +/3/2<Q,0<1.
Clearly 71(Q) <0 and, hence, A; <0 for 0<Q<Q,, and
h(2) >0 and A;>0 for Q,,<Q<Q,. Using (23), (21)
becomes for {={,,

[~ @Snams + (2 — 1)4/=S] = 0. (30)

QZ(QZ —_— R2)

For 0 <Q <y, since A; <0, n; and 7: are complex such
that 72 = —m*. Also, since when 7 is complex, 1, =75 and
M =17y, it follows that 5,7, <0. It can be verified that
{={. lies in the range {1<¢{< {5 for (<) Q<0<
and in the range 0<{<{; for 1<Q<Q,. Therefore,
both 7; and 5. are real for Q,, <2< Q,. From Table 1, it
follows that for Q.o <Q <1, n,= —=n1 and 9, =17., and for
1 <Q<Q,, na=m and 9, =n.. Consequently, 5,7, <0 for
Qoo <2<, and 7,7,>0 for 1 <Q<Q,.

With reference to Fig. 3, for 0<Q<1, 7.1 <0 and,
therefore, both the terms inside the square brackets in
(30) are negative and hence cannot add to zero. For
1<Q<Q,, 1.m,>0 and, therefore, both the terms inside
the brackets in (30) are positive and hence cannot nul-
lify each other. Hence, {={, is not a solution of (21).

With the help of (11), (12), and (23), it can be proved
that

By = f2(9)/2(2* — RS (31)
Ar = R[1 4+ /—=S1ho(2)/404(Q® — R%)2S5?  (32)
f2(Q) = R* — /=5 ¢(9) (33)

g(Q) = 204 — 20°(1 + R?) + R?
= 2(Q7 — Q) (22 — Q) (34)

and
ha(Q) = R? — /=S{40* — 4Q*(1 + R?) + 3R?}. (33)
It can be deduced that

Q" < min (1, R?) < max (1, R?) < Q2 < Q,2. (36)
For O, <Q<R, g({) <0, and therefore, f2(Q2) >0. Then,
it follows from (31) and (36) that B;>0 for Qs <Q<R.
From (33), it is found that f2(0) <0, f2(%) >0, and
dfs/d22>0 for 0 <Q<Qs. Therefore, it is obvious that
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For L. € isreal for 0<Q<Q; C> 0.
o a i

LP.wW,
Ay <0 Ny >0
4 <0 4 > 0
B, >0 B <0
0 Qu an ! Qu
Q
For - 8 isreal for 0< Q< R C > 0.
I PROPER SURFACE WAVE LP.W, >
(PN <0
A2 <0 AZ >0
8,< 0 52 > 0
0 Qb Qbo min (R, 1} max(R, 1)
Q
1P W.  IMPROPER WAVE
Fig. 3. Frequency ranges of various waves.

£2(Q) has one zero, say 2=, in the range 0 <Q < Q. 1t

may be easily deduced then that B <0 for 0 <Q <O, and
that B»>0 for §, <Q<R. Note that Ay (1) >0, ks (R) >0,
and £2({%) <0. It can be shown that %.(Q) has a zero,
Q={, in the range @, <Q<R. Consequently, in the
range 0 <Q <o, £2(Q) and, hence, A, are both negative,
and they are both positive for Q,, <Q<R.

Using (23), (21) becomes for {={,

[~ @2Snm — (2 — )v=5§] = 0. (37)

92(92 —_— R2>
For 0 <Q <, since A; <0, both 7, and 7, are complex
such that n:= —m*, and therefore, 5,7, =n1.<0. For
Qpo <@ <R, since 4;,>0 and By<0, both 7 and 7, are
purely imaginary with the result that 5, =1:; 7, =7, and
o =72 <0. With reference to Fig. 3, for 0<Q<R,
since n,m, <0, it follows that the first term inside the
brackets in (37) is negative. For 0 <@ <min (R, 1), the
second term within the brackets in (37) is positive, but
for min (R, 1) <@<max (R, 1), it is negative. It is then
obvious that (37) becomes equal to zero when { =, for
the frequency range, 0 <Q<min (R, 1). Consequently,
it may be concluded that {={; for 0 <Q<min (R, 1) is
the only proper solution of (21), and that (21) has no
other real solutions. Since the imaginary parts of 5, and
m2 are both positive for 0 <Q<min (R, 1), it follows
from (13) that for {={,, the fields propagate without
any attenuation along the x direction but decay expo-
nentially in the z direction. Consequently, the wave
associated with the propagation coefficient {=¢, is a
surface wave.

For 0 <€ <, the surface wave field is easily shown
to be the product of two factors, one of which decays
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Fig. 4. Characteristics of surface waves along a perfectly conducting

screen covered with a magnetoionic medium for R=0.5.

exponentially, and the other shows an oscillatory be-
havior normal to the screen. For Q,<Q<min (R, 1),
the surface wave field is the sum of two components, each
of which decays exponentially at different rates normal
to the screen. From (23), it is obvious that the phase
velocity v=c¢/{; of the surface waves is always less than
the free space electromagnetic wave velocity c.

The normalized phase velocity v/¢=1/{, and the nor-
malized propagation coefficient Q{; are depicted in Figs.
4 and 5. The surface waves are seen to be forward waves
in the sense that their phase and group velocities are of
the same sign and their phase velocity always decreases
with the frequency. For R <1, the surface waves have a
resonance at &= R, for which frequency the phase veloc-
ity goes to zero. The phase velocity of the surface
waves always increases as the strength of the ex-
ternal magnetostatic field is increased. The normal-
ized attenuation rates, which are defined by the relation
o 2= 1m 5, 4, are also plotted in Figs. 4 and 5 as a func-
tion of frequency. As indicated earlier for 0<Q < y,,
oay=a», and they increase with the frequency. For
Qo <Q<min (R, 1), a; and a. are different, oy increases
and o, decreases with the frequency. For @=min (R, 1),
a3 =0, and for R <1, ay= o at the surface wave resonant
frequency Q=R,
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Fig. 5. Characteristics of surface waves along a perfectly conducting

screen covered with a magnetoionic medium for R=1.5.

Adachi and Mushiake [15], [16] have also investi-
gated this problem previously and have obtained
results which are different from those presented here in
that thev obtain, in addition to the surface waves, non-
attenuated plane waves with a propagation coefficient
along the perfectly conducting screen given by {={,, in
the frequency range 1 <Q<Q,. They state that one of
the plane waves is left-handed and is incident on the
conducting plane and the other is right-handed and is
reflected from the plane. From physical considerations,
it is not reasonable to expect a homogeneous plane wave
propagating at an angle to the conducting plane for an
infinite, open structure. Moreover, the existence of the
incoming or the incident plane wave ipso facto violates
the outgoing or the radiation condition. From Table I,
it is seen that the radiation condition in a magnetoionic
medium is the same as that in free space for both the
modes in the frequency range 1 <Q<Q,. As a result,
both the modes should be required to have outwardly
traveling phase fronts, in order that the radiation condi-
tion be fulfilled. Note that any field component, such as
E.(x, ), has, in general, four linearly independent solu-
tions. Two of the solutions have outwardly traveling
phase fronts and, therefore, satisfy the radiation coudi-
tion in the frequency range 1< <Q,. The other two



142

solutions have inward traveling phase fronts and hence
violate the radiation condition for 1 < Q< Q,. At the out-
set, the two incoming solutions which violate the radia-
tion condition are to be ruled out and, as in (15), only
the two independent solutions which satisfy the radia-
tion condition have to be retained. Therefore, no incom-
ing or incident plane wave can be obtained as a solution,
with the result that the plane waves obtained by Adachi
and Mushiake do not constitute a proper solution and
that the corresponding ¢ = ¢, does not satisfy the proper
dispersion equation (21) for 1 <Q<,.

IV. Vacuum-PrAasMA INTERFACE

Let the half-space z>0 be filled, as before, with a
homogeneous, loss-free plasma with a static magnetic
field in the x direction. Let the remaining half-space
2<0 consist of free space with the plane interface =0
separating the semi-infinite regions of free space and
plasma. In the free space region, the electric and the
magnetic fields are specified by (1) with =0 and
es=¢;=1. It is convenient to seek the expressions for the
field components in the following form:

€
_0_ Hetkotztokonz (3 8)
Mo

E(x, ) = Eethotztikonz, H(x, z) =

Note that only the case for which the fields are indepen-
dent of y is to be considered. With the help of (1) and
(38), it can be shown that

1
- —H, E,
U

Il

E, = _Lg (39)

1 ¢
H,=—E, H,=—-—H,.
1 1
With the help of (38) through (40), it is obvious that
E.(x, 3), E,(x, 3), Hs(x, 2), and H,(x, 2) are given by the
following expressions for z<0:

(40)

E.(x, ) = Egekol=—thonz (41)
H, ]
E,,(x, Z) = § — gthofz—ikomoz (42)
70
G
HI(OC, Z) =1 —_ Hoelkofz—zkonoz (43)
Mo
e« Eo
H”(x) Z) = — U elkofr—zkonoz (44)
Ko 7o
where
no =1 —¢* ¢ <1

The fields given by (41) through (44) are seen to satisfy
the radiation condition as z tends to — «. The boundary
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conditions that the tangential components of the elec-
tric and the magnetic fields are continuous across the
plane interface z=0, together with (15), (17) through
(19), and (41) through (44) result in a set of homoge-
neous equations, whose nontrivial solution may be
shown with the help of (20) to yield the following dis-
persion equation specifying {:

noler — es(l — €5) + ea(na + 75) (esno® + nams)

+ emo[nam(l + ) + es(n? + )] = 0. (46)
The proper values of 5, and 7, have to be chosen in a
manner indicated already.

Consider the following two cases: Case 1) 0<{ <1
(no real), n; and 75 are both real; Case 2) 1<{<
(no imaginary); 71 and 7 are both purely imaginary or
71 and 7. are both complex such that ne= —mn*, It can
then be shown that (46) is real for Case 1 and purely
imaginary for Case 2. For the remaining cases, (46) is
complex and, in general, it will not be possible to choose
a real ¢{={, which will simultaneously nullify both the
real and the imaginary parts of (46). Therefore, thereal
solutions of (46) are possible only in the above-men-
tioned two cases.

Since (46) is quite complicated, only a numerical solu-
tion appears to be possible. Since the dispersion rela-
tions in an unbounded plasma have marked differences,
depending on whether the plasma frequency is greater
than (R<1) or less than (R>1), the gyromagnetic fre-
quency, and since it is, therefore, reasonable to antici-
pate that these differences will also influence the nature
of the solutions of (46), the numerical solution of (46)
was sought for one value of R less than unity, (R=0.5),
and another value of R which is greater than unity,
(R=1.5).

For Case 1, since 0<{ <1, it is seen from Figs. 6 and
7 that there are only three regions (indicated by shading
with horizontal lines) for which both %, and 7, are real.
For the values of Q and {, corresponding to the above-
mentioned three regions, the real solution of (46) was
investigated, but no real solutions were found. For Case
1, the real solutions {={, will correspond to homoge-
neous plane waves in both the plasma and the free space
regions; these plane waves will be outgoing from the
interface 2=0 in both the regions. An infinite, open
structure cannot be expected to support such plane
waves. Consequently, the absence of real solutions
¢ ={, corresponding to Case 1 is in accord with physical
considerations.

For Case 2, the real solutions {={, were sought for
frequencies ranging from Q=0 to =10, and again the
search was limited to those values of { for which 5, is
purely imaginary and 7, and 7. are either both purely
imaginary (indicated by shading with vertical lines) or
complex such that 7.= —»* (indicated by shading with
crossed lines). For R<1, the real solutions {={; were
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found from =0 up to a higher @=4,,, which lies be-
tween 1 and R. For R>1, the real solutions {={, were
found from Q=0 to 2=1. For R<1, {={, was found to
become infinite, and this fact enables the determination
of an analytical expression for {,. When { tends to in-
finity, it can be shown with the help of (9) and (10) that

2 —

€
m? = — ¢ et = — — (%

€1

(47)

Using (47), it can be easily shown that for large ¢, (46)

beCOIlleS
€] €

It may be verified easily that for R <1, (48) is satisfied if

(48)

4/14—1%2__ 0.
2 V2

For R>1, it should be noted that (46) can never be
satisfied and, therefore, the propagation coefficient for
the guided waves never becomes infinite. For R <1, the
guided waves have a resonance at Q=£,,, beyond which
there is no propagation. The phase velocity of the sur-
face waves vanishes at the resonant frequency Q2=2Q,.
When the magnetostatic field vanishes, then the surface
wave resonant frequency becomes equal to Q=1/+/2,
which is the correct value for the case of an isotropic
plasma [7].

Q=Q, =

(49)
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Possible regions of surface waves for R2=1.6.

The normalized phase velocity v/¢=1/{,, and the nor-
malized propagation coefficient €, of the surface waves
are plotted in Figs. 8 and 9. The surface waves are found
to be forward waves and their phase velocities approach
the free-space electromagnetic wave velocity in the
limit of zero frequency. The phase velocity decreases
continuously as the frequency is increased and goes to
zero at @=Q, for R<1. The phase velocity may be
shown to attain the value ¢v/(R—1)/R at Q=1 for
R>1. The surface waves exist only in the frequency
range 0 <Q <min (£,,, 1). The phase velocity of the sur-
face waves always increases as the strength of the mag-
netostatic field is increased.

The attenuation rate a, of the surface waves normal
to the interface, in the free space region, is seen from
Figs. 8 and 9 to increase with the frequency, and for
R <1, ap becomes infinite at the surface wave resonant
frequency Q@ =Q,. In the plasma region, the surface wave
field is the product of two factors for { less than a critical
frequency £,; one of the factors decreases normal to
the interface at a rate a=ay=as, and the other factor
shows an oscillatory behavior. For Q,<Q <min (@,, 1),
the surface wave field is the sum of two components,
each of which decays exponentially at different rates oy
and oy normal to the interface. For R<1 and for >4,
both a3 and «; increase rapidly with the frequency and
become infinite at the surface wave resonant frequency
2=2,. For R>1 and 2>, a; increases and o, decreases
rapidly with the frequency. For €=1, beyond which
there are no surface waves, a; =0, and oy is large, but
finite,
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Fig. 8. Characteristics of surface waves along a vacuum-plasma
interface for R=0.5.

V. CONCLUSION

The characteristics of the guided waves supported by
a plane boundary of a semi-infinite region of magneto-
ionic medium are studied for the case in which the mag-
netostatic field is parallel to both the interface and the
propagation direction. Two problems are considered,
one for which the magnetoionic medium is terminated
by a perfectly conducting screen, and the other for
which it is terminated by a half-space of vacuum. Sur-
face waves are found to be propagated for all frequencies
below both the plasma and the gyromagnetic frequency
in the first case, and below both the plasma and 1/4/2
times the upper hybrid resonant frequency in the sec-
ond case. The characteristics of the surface waves are
examined, and numerical results for some typical param-
eters of interest are given.
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