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Abstract—The characteristics of the surface waves supported by
a plane boundary of a semi-infiite region of gyrotropic plasma are

investigated for the case in which the dmection of the magnetostatic

field is parallel to both the interface and the propagation direction.

Two cases are considered, one for which the plasma is terminated

by a perfectly conducting screen, and the other for which it is termi-

nated by a semi-intinite region of free space. Surface waves are

found to be propagated for all frequencies below both the plasma

and the gyromagnetic frequency in the fist case, and below both the

plasma and 1/#~ times the upper hybrid resonant frequency in the

second case. The characteristics of the surface waves are discussed,

and numerical results of the phase velocity and the propagation co-

efficient of the surface waves along the interface, as well as their

attenuation rates normal to the interface, are given.

I. INTRODUCTION

T

HE PROPAGATION of electromagnetic waves

in a stratified plasma layer has application both

to the ionospheric wave propagation and to the

plasma sheath problem connected with the reentry

communication. In a recent book, Wait [1] has given a

number of examples of electromagnetic wave propaga-

tion in stratified plasma media with and without the

presence of the external static magnetic field and with

emphasis on their application to the wave propagation

beneath the ionosphere. One of the simplest examples of

stratified plasma media, which has received consider-

able attention in recent times, is a perfectly conducting

plane screen covered with a semi-infinite layer of gyro-

tropic plasma with the magnetostatic field being paral-

lel to the screen [2 ]– [4 ]. The characteristics of the

waves guided along the screen in a direction perpendicu-

lar to the static magnetic field have been investigated

for the simplest case of a homogeneous and loss-free

plasma. Wait [5] has considered the extension of the

above analysis for the case of an inhomogeneous plasma.
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Another simple configuration of a plane stratified me-

dium which has been subjected to a considerable investi-

gation is a plane interface between two semi-infinite di-

electric regions. Epstein [6] has shown that a surface

wave can exist along a plane interface between free

space and a nonconducting medium with a negative

dielectric constant. Tamir and Oliner [7] have treated

the wave propagation along a plane interface between

an isotropic plasma and free space and, in confirmation

of the results of Epstein, have shown that a surface

wave can propagate along a vacuum-plaslma interface

for frequencies below l/@ times the plasma frequency.

The nature of the guided waves at a vacuum-magneto-

active plasma interface has also been considered for the

case in which the static magnetic field is parallel to the

interface, but is perpendicular to the propagation direc-

tion [8]-[11].

In view of its possible application to whistler propa-

gation, there is current interest in the study of wave

propagation in a plane stratified gyrotropic plasma for

the case of propagation in the direction of the external

magnetostatic field. In this paper, two simple problems

of the above category are studied, namely, the surface

wave propagation at a perfectly conducting plane screen

covered with magnetoionic medium, and at a plane inter-

face between free space and magnetoionic medium. In

each case, the direction of the mag-netostatic field is as-

sumed to be parallel to both the screen and the propa-

gation direction.

II. GENERAL CONSIDERATIONS

It is convenient to start with the introduction of a rec-

tangular coordinate system x, y, and z. The half-space

3>0 ia assumed to be filled with a homogeneous, loss-

free magnetoionic medium which is permeated through-

out by a uniform static magnetic field in the x direction.

Consequently, the electric and the magnetic vectors are

specified by the following time-harmonic Maxwell’s

equations [12 ]:

V x E = iq.JoH; VXH=—iWCoE. E (1)

where I.LO and eO are, respectively, the permeability and

the permittivity of free space. A harmonic time depen-
dence of the form e—~ti~is assumed for all the field com-
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ponents. The components of the relative tensor permit-

tivity e are given by the following matrix:

(2)

where

and w, WP, an d u, are the source, the electron plasma,

and the electron gyromagnetic angullar frequencies, re-

spectively.

Since only the two-dimensional problem (d/dy = O) is

to be considered, the field components may be sought in

the following form:

E(*, z) = Eel’’”@+’’””’; H(.v, z) =
d

s ~eikorz+iko?z (4)

Vo

where ko is the propagation coefficient of electromag-

netic waves in free space. Using (4) in (1), the following

relations are easily derived:

A nontrivial solution of (7) and (8) easily may be shown

to be possible only if

?14+-%2+c=o (9)

where

c = -~ [(f’ – e,)’ – 62’]. (lOb)
cl

With the use of (3a) and (3 b), the expressions for B and

C, given in (1 Oa) and (1 Ob), may be simplified to yield

– {2Q4 – 2Q’(2 + K’) + 2 + R’}] (11)

— Q2R’(f’ – 1)’ + 1]. (12)

Also, it may be proved that

4R’f’A
B2_~c=

~4(@ – 1 – R2)2 ;

~2(p – 1)2 .

A= Q.’ -l+
4{2

(13)

The solutions of (9) are given by

B R?I/~

In obtaining q from qz, a branch-cut along the positive

real axis of the ~’ plane is implied. Consider the follow-

ing four cases: 1) ql real, qz imaginary; 2) both q] and

~’ are complex such that 77’= — ql*; 3) both ~1 and qz

are purely imaginary; and 4) both ql and VZ are purely

real. It is convenient for the following analysis to deter-

mine the values of R, Q, and [ which correspond to the

preceding four cases. This problem was studied by

Seshadri [13] in a different connection, and the results

are presented in Fig. 1 for R <1 and in Fig. 2 for R >1.

In view of (4) and the foregoing discussion, it is c}bvi-

ous that, in general, any field component, say E.(x, z),

has the following form:

EZ(.Y, z) = [Ele;@~a’ + E2e;~0~bz]eik0~’ z >0 (15)

where

When q is purely imaginary or complex \vith a positive

imaginary part, the positive sign in ( 16) has to be

chosen since the negative sign will resullt in the Iields

growing exponentially for large z. When ~?is real, either

the positive or negative sign in (16) has to be chosen so

as to fulfill the radiation condition. For a particular

value of R, Q, and ~ for which ql is real, let Q alone be

changed gradually, so that at a particular value of

L?= !&, ql will change from being purely real to being

purely imaginary. Therefore, Q = flP corresponds to a

branch-point on the real axis of the Q plane. Alorq< the

real axis, ql is real on one side of the branch-point and is

purely imaginary on the other side. On the purely irrlagi-

nary side, it is obvious that V.= vI. To obtain the cor-

rect value of qa on the other side of the branch-point, it

is only necessary to analytically continue around the

branch-point in a manner that ensures analyticity in the

upper half of the Q plane. Such a procedure will guarant-

ee, in the case of a transient source, that. there is no re-

sponse before the starting of the source. A detailed treat-
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Fig. l(a) Regions of propagation and nonpropagation for the mode 1 for R’= 0.8.
(b) Regions of propagation and nonpropagation for the mode 2 for R’ = 0.8.’

1 The following applies to Figs. 1 through 9.

a) f22=l

d)02=l+R’

(Q’ – %’) (Q’ – w)
‘) ‘2=’42=(w – w) (02 – Q,’)

ment of this method of determining the proper values of

qa(vb) when rh(m) is real is given by Seshadri and Wu

[14], and the results alone are summarized in Table I,

with particular reference to R = 0.5 and R = 1.5 since

the numerical results given in this paper pertain to only

these two values of R.

With the help of (4) through (7), and (15), the expres-

sions for Eu (x, z), IIti(.x, z), and 17u(x, z) easily may be

obtained to be given by

f) V=r5’=l+;, [(l – 0’) – l/( fl-l)(W–l– R’)]

[

z. zb
E,(x, Z) = – i

1

— &#ko%z. + _ E,#koWS @o@ (17)
7.

g) r’=r6’=l+; [(l– Q’)+

~b

The curve f’= f.s’ intersects the curves J2 =.h’ and ~’ =jiz at ~ = %
and Q = L?d, respectively. z = _ [% – W1’ – C,f’]

(20). .

imuun C2{

= v real

EEl

It is desired first to investigate the nature of the
=~ complex (.1= —n.2*)

guided waves propagating along the magnetostatic field

•1
=~ imaginary.

at a perfectly conducting plane screen with a semi-

infinite region of magnetoionic medium.
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Fig. 2(a) Regions of propagation and nonpropagation for the mode 1 for R’= 1.6.
(b) Regions of propagation and nonpropagation for the mode 2 for R’= 1.6.

TABLE I

PROPER VALUES OF qa AND rl~

O< fl’<fl,r j-lj<f< ~
O.< fl<min (R, 1) f,<j-<~ } qb= ‘?12

II 1, PERFECTI.Y CONDUCTING SCREEN CO\TERED

WITH A MAGNETOIONIC M F,DIUM

The application of the boundary conditions E.(x, O)

= E, (x, 0) = O, on the perfectly conducting screen, to-

gether with (15) and (17), yields the proper dispersion

equation (PDE) specifying ~:

The improper dispersion equation (1 DE) is obtained

from (21) by changing q.q~ to – q~q~. On multiplying

PDE and IDE and noting that

%2~b2 = 712722 = c; Cl — .S3 = elz — E22 — e~.$~> 1(22)

the following possible solutions are obtained for ~z:

fa,b2 = [1 + (–~)-1’21-~where~ = Q2– ~-- Rz. (z3)

In order to determine the proper solution of (21), it is

necessary to ascertain if (23) satisfies (21) by direct sub-

stitution. It is easily verified from (23) that ~a is real for

0< Q < ~., where it is less than unity, ancl ~b is rea[ for

0< Q <R, where it is greater than unity. Note that

flu = <l + R2 is called the upper hybrid resonant fre-

quency.

For values of ~ given by (23), (12) reduces to

c = – (L?’ – 1)2/ fl’s. (24)

For 0< !2 < fL, C> O and the Case 1, corresponding to VI

being real and 772being imaginary, does not occur.

B. 2

0

B= Bnforf=~fiand A~= ~ —C; n=’a, b. (2.$

Using (11), (12), and (23), it can be shown that

B, = f,(Q)/fRS (26)
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Al = R’lzl(@/4Q4S’[1 + V–S]

where

f,(n) = R’/(l + V’TY) + 2(Q’ – l)<-

and

k,(fi?) = R’/(l + <=s) + 4(Q’ – 1)<=s.

MICROWAVE

(27)

(28)

(29)

It can be shown that ~,(flti) = O, where l/~2 <0.<1. For

O< fl<f2., f,(fl)<Oand, hence, B1>O, and for ftfi<ti<flU,

~l(fl) >0 and, hence, B, <O. It is also possible to show

that hl(~.o) = O where f2Uo>fl. and ~3/2 <$2G0 <1.

Clearly kl(!d) <O and, hence, Al< O for O <Q <Q.O, and

lzl(fl) >0 and AI>O for f2c0 <Kl<fll,. Using (23), (21)

becomes for ~ = f.,

1
[– Q’sqaq, + (Q’ – 1)<–s] = o. (30)

fl’(fl’ – R’)

For O <fi2<fl@0, since Al<O, ql and q! are complex such

that ~z = — vI*. Also, since when q is complex, T. = ql and

qb = T72, it follows that V.qb <0. It can be verified that

f=~. lies in the range ~l<{<~s for (K$<)%O<Q <I,

and in the range 0< ~ < ~1 for 1< Q < i2U. Therefore,

both ql and q.z are real for fla~ < Q < flu. From Table I, it

follows that for ~a, <Q <1, q.= – q, and q~ = qz, and for

1 <L?< Q., V.= ql and q~ = qz. Consequently, qcq~ <O for

flmo<fi<l, and ~a~~>O for I< fl<OU.

With reference to Fig. 3, for O <Q <1, qc~~ <O and,

therefore, both the terms inside the square brackets in

(30) are negative and hence cannot add to zero, For

1 <L?< flu, ~a?lb >0 and, therefore, both the terms inside

the brackets in (30) are positive and hence cannot nul-

lify each other. Hence, ~= ~a is not a solution of (21).

With the help of (1 1), (12), and (23), it can be proved

that

B2 = f2(Q)/W(f2’ – R’)s (31)

AZ= I? ’[l + /–S]lz,(fl)/4i24 (fP – R2)’S2 (32)

~z(Q) = R2 – v’= g(~) (33)

g(fl) = 2Q4 – 2Q2(1 + R’) + R’

– 2(Q2 – !25’)(s2’ – Q#)— (34)

and

lt,(fl) = R’ – /–S[K14 – 4f12(l + R’) + 3R2}. (35)

It can be deduced that

QSZ < min (1, R2) < max (1, R’) < !il,’ < Q.’. (36)

For Qs < Q <R, g(fl) <O, and therefore, ~z(fl) >0. Then,

it follows from (31) and (36) that Bz >0 for S25<0 <R.

From (33), it is found that ~z(0) <O, jz(fl~) >0, and

djz/df12 >0 for O <Q < Clb. Therefore, it is obvious that
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Fig. 3. Frequency ranges of various waves.

.fz(~) has one zero, say Q = ~b, in the range 0< fl < fl~. It

may be easily deduced then that Bz <0 for O <L?< ~b, and

that B2> O for f&< Q <R. hTote that hz(l) >0, lzz(R) >0,

and f?.2(~b) <O. It can be shown that Izz(fl) has a zero,

~ = !&n, in the range ~b < ~ <R. Consequently, in the

range O < ~ < fib@ h~(~) and, hence, A’ are both negative,

and they are both positive for ~bO < Q < R.

Using (23), (21) becomes for ~= ~b

1
— [– ~’s~,z?lb – (fl’ – l)V–S] = O. (37)

——

fi2(Q2 _ R,)

For 0< Q < ~bo, since Az <0, both ql and q’ are complex

such that 92= — VI*, and therefore, ~~~b = qlqz <O. For

f?bO<~<R, since AZ>O and B’<O, both ql and qz are

purely imaginary with the result that ~a = VI; qb = q’ and

T.Vb = mv2 <0. With reference to Fig. 3, for 0< fl <R,
since ?la~b <O, it follows that the first term inside the

brackets in (37) is negative. For O <Q < min (R, 1),the

second term within the brackets in (37) is positive, but

for min (R, 1) <fd<max (R, 1), it is negative. It is then

obvious that (37) becomes equal to zero when ~ = ~b for

the frequency range, O <0< min (R, 1). Consequently,

it may be concluded that ~ = ~b for O <L?< min (1?, 1) is

the only proper solution of (21), and that (21) has no

other real solutions. Since the imaginary parts of ql and

qz are both positive for 0< Q <rein (R, 1), it follows

from (15) that for ~ = (b, the fields propagate without

any attenuation along the x direction but decay expo-

nentially in the z direction. Consequently, the wave

associated with the propagation coefficient ~ = lb is a

surface wave.

For 0< Q < fi?biJ, the surface wave field is easily shown

to be the product of two factors, one of which decays
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Fig. 4. Characteristics of surface waves along a perfectly conducting
screen covered with a magnetoionic medium for R =0.5.

exponentially, and the other shows an oscillatory be-

havior normal to the screen. For C?,,< ~ < min (R, 1),

the surface wave field is the sum of twc) components, each

of \vhich decays exponentially at different rates normal

to the screen. From (23), it is obvious that the phase

velocity v = c,/~b of the surface waves is always less than

the free space electromagnetic wave velocity c.

The normalized phase velocity v/c ❑ = l/~~ and the nor-

malized propagation coefficient ti{b are depicted in Figs.

4 and 5, The surface waves are seen to be forward waves

in the sense that their phase and group velocities are of

the same sign and their phase velocity always decreases

with the frequency. For R <1, the surface waves have a

resonance at Q = R, for which frequency the phase veloc -

it y goes to zero. The phase velocity of the surface

waves always increases as the strength of the ex-

ternal magnetostatic field is increased. The normal-

ized attenuation rates, which are defined by the relation

cq, z = Q Im ql,z, are also plotted in Figs. 4 and 5 as a func-

tion of frequency. As indicated earlier for 0< Q < flbO,

0!1=0!2, and they increase with the frequency. For

‘dhfl < Q < min (R, 1), al and a~ are difl”erent, CM increases

and cw decreases with the frequency. For Q = min (R, 1),

cw = O, and for R <1, al = co at the surface wave resonant

frequency 0== R.
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Fig. 5. Characteristics of surface waves along a perfectly conducting
screen covered with a magnetoionic medium for R = 1.5.

Adachi and Mushiake [15], [16] have also investi-

gated this problem previously and have obtained

results which are different from those presented here in

that they obtain, in addition to the surface waves, non-

attenuated plane ~vaves with a propagation coefficient

along the perfectly conducting screen given by ~ = ~~, in

the frequency range 1< Q < f2U. They state that one of

the plane waves is left-handed and is incicient on the

conducting plane and the other is right-handed and is

reflected from the plane. From physical considerate ens,

it is not reasonable to expect a homogeneous plane wave

propagating at an angle to the conducting plane for an

infinite, open structure. Moreover, the existence of the

incoming or the incident plane wave ipso facto viollates

the outgoing or the radiation condition. From Table 1,

it is seen that the radiation condition in a magnetoionic

medium is the same as that in free space for both the

modes in the frequency range 1< Q < Q,. As a result,

both the modes should be required to have outwardly

traveling phase fronts, in order that the radiation condi-

tion be fulfilled. ATote that any field component, such as

Ez(x, z), has, in general, four linearly independent solu-

tions. Two of the solutions have outwardly traveling

phase fronts and, therefore, satisfy the radiation ccmdi-

tion in the frequency range 1< Q < Q.. The other two
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solutions have inward traveling phase fronts and hence

violate the radiation condition for 1< Q <W. At the out-

set, the two incoming solutions which violate the radia-

tion condition are to be ruled out and, as in (15), only

the two independent solutions which satisfy the radia-

tion condition have to be retained. Therefore, no incom-

ing or incident plane wave can be obtained as a solution,

with the result that the plane waves obtained by Adachi

and Mushiake do not constitute a proper solution and

that the corresponding ~ = ~a does not satisfy the proper

dispersion equation (21) for 1 <Q < S2w.

IV. VACUUM-PLASMA INTERFACE

Let the half-space z> O be filled, as before, with a

homogeneous, loss-free plasma with a static magnetic

field in the x direction. Let the remaining half-space

z <0 consist of free space with the plane interface z = O

separating the semi-infinite regions of free space and

plasma. In the free space region, the electric and the

magnetic fields are specified by (1) with ez= O and

G = c1= 1. It is convenient to seek the expressions for the

field components in the following form:

—

E(%, z) = Ee;~o@+ito~’; H(z, z) =
d

~ ~e~~O@+~~OqZ (38)

Mo

Note that only the case for which the fields are indepen-

dent of y is to be considered. With the help of (1) and

(38), it can be shown that

EU=– LH= E,=–~Ez (39)
T ?

Hu=~Ez HZ=–~H.. (40)
7 v

With the help of (38) through (40), it is obvious that

Ez(x, z), E,(x, z), Ilz(x, z), and H.(x, z) are given by the

following expressions for z< O:

Ez(x, Z) = Eoeiko~*–ikonos (41)

HO
EV(~, z) = i — e,~O~Z–i~070z (42)

?0

H.(x, Z) = i
d

Z HoeMo~z-ikovoz (43)
Po

—

d

co Eo
Hu(x, z) = – — — e“”~-’’ozoz (44)

Llo 70

qo=dl—j-n r<l

=+;<~2–1 (>1. (45)

The fields given by (41) through (44) are seen to satisfy

the radiation condition as z tends to – ~. The boundary

where

conditions that the tangential components of the elec-

tric and the magnetic fields are continuous across the

plane interface z= O, together with (15), (17) through

(19), and (41) through (44) result in a set of homoge-

neous equations, whose nontrivial solution may be

shown with the help of (20) to yield the following dis-

persion equation specifying ~:

Vo(el – fz)%(l – e3) + ~1(% + w) (~37?02+ %%)

+ clno[nz~~(l + ~3) + ~3(qa2 + m2)l= 0. (46)

The proper values of q. and ~b have to be chosen in a

manner indicated already.

Consider the following two cases: Case 1) 0< r <1

(qo real), 71 and q, are both real; Case 2) 1 <f< m

(VQ imaginary); m and 772are both purely imaginary or

VI and VZ are both complex such that 772= — ql*. It can

then be shown that (46) is real for Case 1 and purely

imaginary for Case 2. For the remaining cases, (46) is

complex and, in general, it will not be possible to choose

a real f = ~, which will simultaneously nullify both the

real and the imaginary parts of (46). Therefore, the real

solutions of (46) are possible only in the above-men-

tioned two cases.

Since (46) is quite complicated, only a numerical solu-

tion appears to be possible. Since the dispersion rela-

tions in an unbounded plasma have marked differences,

depending on whether the plasma frequency is greater

than (R< 1) or less than (R> 1), the gyromagnetic fre-

quency, and since it is, therefore, reasonable to antici-

pate that these differences will also influence the nature

of the solutions of (46), the numerical solution of (46)

was sought for one value of R less than unity, (R= 0.5),

and another value of R which is greater than unity,

(R=l.5).

For Case 1, since 0< ~ <1, it is seen from Figs. 6 and

7 that there are only three regions (indicated by shading

with horizontal lines) for which both ~1 and 772are real.

For the values of Q and ~, corresponding to the above-

mentioned three regions, the real solution of (46) was

investigated, but no real solutions were found. For Case

1, the real solutions r = f. will correspond to homoge-

neous plane waves in both the plasma and the free space

regions; these plane waves will be outgoing from the

interface z = O in both the regions. An infinite, open

structure cannot be expected to support such plane

waves. Consequently, the absence of real solutions

~= ~. corresponding to Case 1 is in accord with physical

considerations.

For Case 2, the real solutions ~ = ~, were sought for

frequencies ranging from 0 = O to Q = 10, and again the

search was limited to those values of r for which no is

purely imaginary and q, and 77, are either both purely

imaginary (indicated by shading with vertical lines) or

complex such that 772= — ~1* (indicated by shading with

crossed lines). For R <1, the real solutions ~ = ~, were
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Fig. 6. Possible regions of surface wa,ves for R2 = 0.8.

found from Q = O up to a higher Q= fin, which lies be-

tween 1 and R. For R >1, the real solutions j = ~, were

found from Q==O to Q=l. For R<l, ~={, was found to

become infinite, and this fact enables the determination

of an analytical expression for !il~. When ~ tends to in-

finity, it can be shown with the help of (9) and (10) that

Using (47), it can be easily shown that for large {, (46)

becomes

-“’[’+a’’+d:l=” ’48)
It maybe verified easily that for R <1, (48) is satisfied if

v’I+R2
!2 =0.= —

Q,—.—.—.
2 47

(49)

For R >1, it should be noted that (46) can never be

satisfied and, therefore, the propagation coefficient for

the guided waves never becomes infinite. For R <1, the

guided waves have a resonance at Q Z=0%, beyond which

there is no propagation. The phase velocity of the sur-

face waves vanishes at the resonant frequency f2 = fl~.

When the magnetostatic field vanishes, then the surface

wave resonant frequency becomes equal to Q = 1/ ~~,

which is the correct value for the case of an isotropic

plasma [7].

n’

2

IMlmI

——.

0
0

A~.
2 4 6 8 10

~2

Fig. i’. Possible regions of surface waves for R2 = 1.6.

The normalized phase velocity v/c = I/f,, and the nor-

malized propagation coefficient fl~, of the surface waves

are plotted in Figs. 8 and 9. The surface waves are found

to be forward waves and their phase velocities approach

the free-space electromagnetic wave velocity in the

limit of zero frequency. The phase velocity decreases

continuously as the frequency is increased and go,es to

zero at Q =Q for R <1. The phase velocity may be

shown to attain the value c~ (R— 1 )/,R at L!= I for

R >1. The surface waves exist only in the frequency

range 0<0< min (Q~, 1). The phase velocity of the sur-

face waves always increases as the strength of the mag-

netostatic field is increased.

The attenuation rate CXOof the surface Wi>ves normal

to the interface, in the free space region, is seen from

Figs. 8 and 9 to increase with the frequency, and for

R <1, ao becomes infinite at the surface wave resonant

frequency Q = fl~. In the plasma region, the surface wave

field is the product of two factors for Q less than a critical

frequency Q,; one of the factors decreases normal to

the interface at a rate a = al = CW, and t!he other factor

shows an oscillatory behavior. For Q <Q < min (Q,., 1),

the surface wave field is the sum of two components,

each of which decays exponentially at different rates al

and LW normal to the interface. For R <1 and for 0> Q,

both al and az increase rapidly with the frequency and

become infinite at the surface wave resonant frequency

Q = Q~. For R >1 and Q > Q., CYlincreases amd CK2decreases

rapidly with the frequency. For Q = 1, beyond which

there are no surface waves, cw = O, and cw is large, but

finite.
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Fig. 8. Characteristics of surface waves along a vacuum-plasma
interface for R =0.5.

V. CONCLUSION

The characteristics of the guided waves supported by

a plane boundary of a semi-infinite region of magneto-

ionic medium are studied for the case in which the mag-

netostatic field is parallel to both the interface and the

propagation direction. Two problems are considered,

one for which the magnetoionic medium is terminated

by a perfectly conducting screen, and the other for

which it is terminated by a half-space of vacuum. Sur-

face waves are found to be propagated for all frequencies

below both the plasma and the gyromagnetic frequency

in the first case, and below both the plasma and l/~~

times the upper hybrid resonant frequency in the sec-

ond case. The characteristics of the surface waves are

examined, and numerical results for some typical param-

eters of interest are given.
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